|
Microbial corrosion, also called bacterial corrosion, bio-corrosion, microbiologically influenced corrosion, or microbially induced corrosion (MIC), is corrosion caused or promoted by microorganisms, usually chemoautotrophs. It can apply to both metals and non-metallic materials. ==Bacteria== Some sulfate-reducing bacteria produce hydrogen sulfide, which can cause sulfide stress cracking. ''Acidithiobacillus'' bacteria produce sulfuric acid; ''Acidothiobacillus thiooxidans'' frequently damages sewer pipes. ''Ferrobacillus ferrooxidans'' directly oxidizes iron to iron oxides and iron hydroxides; the rusticles forming on RMS ''Titanic'' wreck are caused by bacterial activity. Other bacteria produce various acids, both organic and mineral, or ammonia. In presence of oxygen, aerobic bacteria like ''Acidithiobacillus thiooxidans'', ''Thiobacillus thioparus'', and ''Thiobacillus concretivorus'', all three widely present in the environment, are the common corrosion-causing factors resulting in biogenic sulfide corrosion. Without presence of oxygen, anaerobic bacteria, especially ''Desulfovibrio'' and ''Desulfotomaculum'', are common. ''Desulfovibrio salixigens'' requires at least 2.5% concentration of sodium chloride, but ''D. vulgaris'' and ''D. desulfuricans'' can grow in both fresh and salt water. ''D. africanus'' is another common corrosion-causing microorganism. The ''Desulfotomaculum'' genus comprises sulfate-reducing spore-forming bacteria; ''Dtm. orientis'' and ''Dtm. nigrificans'' are involved in corrosion processes. Sulfate-reducers require reducing environment; an electrode potential lower than -100 mV is required for them to thrive. However, even a small amount of produced hydrogen sulfide can achieve this shift, so the growth, once started, tends to accelerate. Layers of anaerobic bacteria can exist in the inner parts of the corrosion deposits, while the outer parts are inhabited by aerobic bacteria. Some bacteria are able to utilize hydrogen formed during cathodic corrosion processes. Bacterial colonies and deposits can form concentration cells, causing and enhancing galvanic corrosion. (). Bacterial corrosion may appear in form of pitting corrosion, for example in pipelines of the oil and gas industry.〔Schwermer, C. U., G. Lavik, R. M. M. Abed, B. Dunsmore, T. G. Ferdelman, P. Stoodley, A. Gieseke, and D. de Beer. 2008. Impact of nitrate on the structure and function of bacterial biofilm communities in pipelines used for injection of seawater into oil fields. Applied and Environmental Microbiology 74:2841-2851. http://aem.asm.org/cgi/content/abstract/74/9/2841〕 Anaerobic corrosion is evident as layers of metal sulfides and hydrogen sulfide smell. On cast iron, a graphitic corrosion selective leaching may be the result, with iron being consumed by the bacteria, leaving graphite matrix with low mechanical strength in place. Various corrosion inhibitors can be used to combat microbial corrosion. Formulae based on benzalkonium chloride are common in oilfield industry. Microbial corrosion can also apply to plastics, concrete, and many other materials. Two examples are Nylon-eating bacteria and Plastic-eating bacteria. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Microbial corrosion」の詳細全文を読む スポンサード リンク
|